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Abstract We extend the classical Ambarzumyan’s theorem to the quasi-periodic boundary value
problems by using only a part knowledge of one spectrum. We also weaken slightly the Yurko’s
conditions on the first eigenvalue.
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1 Introduction and Preliminaries

In 1929, Ambarzumyan [1] proved that if {(nπ)2 : n = 0, 1, 2 . . .} is the spectrum of the boundary value
problem

− y′′(x) + q(x)y(x) = λy(x), y′(0) = y′(1) = 0 (1)
with real potential q ∈ L1[0, 1], then q = 0 a.e. Clearly, if q = 0 a.e., then the eigenvalues λn = (nπ)2,
n ≥ 0.

Freiling and Yurko [6] proved that it is enough to specify only the first eigenvalue rather than the
whole spectrum. More precisely, the first eigenvalue denoted by λ0 is a mean value of the potential, that
is, they proved the following Ambarzumyan-type theorem:

Theorem 1.1 If λ0 =
∫ 1

0 q(x) dx, then q = λ0 a.e.

In [13], Yurko also provided generalizations of Theorem 1.1 on wide classes of self-adjoint differential
operators. Some of the inverse results in [13] are as follows:

Theorem 1.2 (a) Let

λ0 =
∫ 1

0
q(x) dx

be the first eigenvalue of the periodic boundary value problem

− y′′(x) + q(x)y(x) = λy(x), y(1) = y(0), y′(1) = y′(0), (2)

then q = λ0 a.e.
(b) Let

λ0 = π2 + 2
α2 + β2

∫ 1

0
q(x)(αsinπx+ βcosπx)2 dx, (3)

for some fixed α and β, be the first eigenvalue of the anti-periodic boundary value problem

− y′′(x) + q(x)y(x) = λy(x), y(1) = −y(0), y′(1) = −y′(0). (4)

Then
q = 2

α2 + β2

∫ 1

0
q(x)(αsinπx+ βcosπx)2 dx a.e.

Consider the boundary value problems Lt(q) generated in the space L2[0, 1] by the following differential
equation and quasi-periodic boundary conditions

− y′′(x) + q(x)y(x) = λy(x), y(1) = eity(0), y′(1) = eity′(0), (5)
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where q ∈ L1[0, 1] is a real-valued function and t ∈ [0, π) ∪ [π, 2π). The operator Lt(q) is self-adjoint
and the cases t = 0 and t = π correspond to the periodic and anti-periodic problems, respectively. Let
{λn(t)}n∈Z be the eigenvalues of the operator Lt(q). In the case when q = 0, (2πn+ t)2 for n ∈ Z is the
eigenvalue of the operator Lt(0) for any fixed t ∈ [0, 2π) corresponding to the eigenfunction ei(2πn+t)x.

The result of Ambarzumyan [1] is an exceptional situation to the general rule. In general, Borg
[2] proved that one spectrum does not determine the potential. Also, Borg showed that two spectra
determine it uniquely. In [5], by imposing an additional condition on the potential they extended the
classical Ambarzumyan’s theorem for the Sturm-Liouville equation to the general separated boundary
conditions. Many generalizations of the Ambarzumyan’s theorem can be found in [3,4,7,8,12]. As far
as we know, for the first time without using any additional conditions on the potential, we extend the
classical Ambarzumyan theorem to the quasi-periodic boundary value problems Lt(q) by using only a part
knowledge of one spectrum (see Theorem 1.4). More precisely, the aim of this paper is to weaken slightly
the conditions in Theorem 1.1 and Theorem 1.2 for the first eigenvalue (see Theorem 1.3) and to prove a
new generalization of Ambarzumyan theorem. We also extend Theorem 1.1 of the previous paper [9].

Our new uniqueness-type results read as follows:

Theorem 1.3 Let λ0(t) be the first eigenvalue of Lt(q). Then:
(a) If λ0(t) ≥ t2 +

∫ 1
0 q(x) dx for t ∈ [0, π), then q =

∫ 1
0 q(x) dx a.e.

(b) If λ0(t) ≥ (2π − t)2 +
∫ 1

0 q(x) dx for t ∈ [π, 2π), then q =
∫ 1

0 q(x) dx a.e.

Theorem 1.4 Let λ0(t) be the first eigenvalue of Lt(q), and suppose that n0 is a sufficiently large
positive integer. Then the following two assertions hold:

(a) If λ0(t) ≥ t2 and λn(t) = (2nπ + t)2 for t ∈ [0, π) and n > n0, then q = 0 a.e.
(b) If λ0(t) ≥ (2π − t)2 and λn(t) = (2nπ + t)2 for t ∈ [π, 2π) and n > n0, then q = 0 a.e.

In Theorem 1.3 (a), the case t = 0 corresponds to the periodic problem (2) and the assertion of
Theorem 1.2 (a) holds by using λ0(0) ≥

∫ 1
0 q(x) dx instead of λ0(0) =

∫ 1
0 q(x) dx. In Theorem 1.3 (b),

the case t = π corresponds to the anti-periodic problem (4) and the assertion of Theorem 1.3 (b) holds
by using λ0(π) ≥ π2 +

∫ 1
0 q(x) dx instead of (3). Namely, unlike Theorem 1.2 (b), the first eigenvalue in

Theorem 1.3 (b) depends only on the mean value of the potential as in Theorem 1.1 and Theorem 1.2
(a). Whether the first eigenvalue-types of Ambarzumyan theorems always depend on a mean value of the
potential can be investigated in another paper.

And, for the boundary value problem (1), the form with reduced spectrum of Ambarzumyan’s theorem
read as follows:

Theorem 1.5 (a) If λ0 ≥
∫ 1

0 q(x) dx, then q =
∫ 1

0 q(x) dx a.e.
(b) If λ0 ≥ 0 and λn = (nπ)2 for n > n0 , then q = 0 a.e., where n0 is a sufficiently large positive integer.

Note that, for example, in Theorem 1 if the first eigenvalue λ0 = 0 and
∫ 1

0 q(x) dx = 0, then q = 0
a.e. Hence, to prove Theorem 1.4 and Theorem 1.5 (b), without imposing an additional condition on the
potential such as

∫ 1
0 q(x) dx = 0, we have information about the first eigenvalue with a less restrictive one

and a subset of the sufficiently large eigenvalues of the spectrum.

2 Proofs

Proof of Theorem 1.3. (a) We show that y = eitx is the first eigenfunction corresponding to the
first eigenvalue λ0(t) of the operator Lt(q) for t ∈ [0, π). Since the test function y = eitx satisfies the
quasi-periodic boundary conditions in (5), by the variational principle, we get

t2 +
∫ 1

0
q(x) dx ≤ λ0(t) ≤

∫ 1
0 −ȳy

′′dx+
∫ 1

0 q(x)|y|2dx∫ 1
0 |y|2dx

= t2 +
∫ 1

0
q(x) dx. (6)
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This implies that λ0(t) = (t2 +
∫ 1

0 q(x) dx) is the first eigenvalue corresponding to the first eigenfunction
y = eitx. Substituting this into the equation

−y′′ + q(x)y = λy,

we get q =
∫ 1

0 q(x) dx a.e.
(b) Similarly, for t ∈ [π, 2π), the test function y = ei(−2π+t)x is the first eigenfunction corresponding

to the first eigenvalue λ0(t) = (2π − t)2 +
∫ 1

0 q(x) dx. Thus, q =
∫ 1

0 q(x) dx a.e. ut

Proof of Theorem 1.4. Note that by [10] (see also [11]), without using the assumption
∫ 1

0 q(x) dx = 0,
the eigenvalues λn(t) of the operator Lt(q) for t 6= 0, π are asymptotically located such that

λn(t) = (2πn+ t)2 +
∫ 1

0
q(x) dx+O

(
n−1ln|n|

)
, (7)

for |n| ≥ n0, where n0 is a sufficiently large positive integer. And, by Theorem 1.1 of [3], there is a similar
asymptotic formulas for the sufficiently large eigenvalues λn(t) of the operator Lt(q) for t = 0, π. Thus,
for all t ∈ [0, π) ∪ [π, 2π), if λn(t) = (2nπ + t)2 for n > n0, then

∫ 1
0 q(x) dx = 0. From Theorem 1.3, q = 0

a.e. Thus Theorem 1.4 (a) and (b) are proved. ut

Remark. Note that, in Theorem 1.4 (a) and (b), if we use the large eigenvalues λ−n(t) = (2nπ − t)2 of
the spectrum S(Lt(q)) instead of λn(t) = (2nπ + t)2, then the assertions of Theorem 1.4 remain valid.
Thus, to prove the theorem for all |n| > n0, it is enough to set either of the eigenvalues λn(t), λ−n(t).

Proof of Theorem 1.5. (a) Arguing as in the proof of Theorem 1.3 (a), for λ0 ≥
∫ 1

0 q(x) dx, the
test function y = 1 is the first eigenfunction corresponding to the first eigenvalue λ0 =

∫ 1
0 q(x) dx. Thus,

q =
∫ 1

0 q(x) dx a.e.
(b) It follows from the asymptotic formula (1.6.6) in [8] that if λn = (nπ)2 for n > n0, then certainly∫ 1

0 q(x) dx = 0. From (a), q = 0 a.e. ut

References

1. Ambarzumian, V.: Über eine Frage der Eigenwerttheorie. Zeitschrift für Physik 53, 690–695 (1929)
2. Borg, G.: Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe bestimmung der differentialgleichung

durch die eigenwerte. Acta Math. 78, 1–96 (1946)
3. Cheng, Y.H., Wang, T.E., Wu, C.J.: A note on eigenvalue asymptotics for Hill’s equation. Appl. Math. Lett.

23(9), 1013–1015 (2010)
4. Chern, H.H., Lawb, C.K., Wang, H.J.: Corrigendum to ÂŞExtension of Ambarzumyan’s theorem to general

boundary conditions. J. Math. Anal. Appl. 309, 764–768 (2005)
5. Chern, H.H., Shen, C.L.: On the n-dimensional Ambarzumyan’s theorem. Inverse Problems 13(1), 15–18

(1997)
6. Freiling, G., Yurko, V.A.: Inverse SturmÂŰLiouville Problems and Their Applications. NOVA Science

Publishers, New York (2001)
7. Hochstadt, H., Lieberman, B.: An inverse sturm-liouville problem with mixed given data. SIAM J. Appl.

Math. 34, 676–680 (1978)
8. Levitan, B.M., Gasymov, M.G.: Determination of a differential equation by two of its spectra. Usp. Mat.

Nauk 19, 3–63 (1964)
9. Kıraç, A.A.: On the Ambarzumyan’s theorem for the quasi-periodic problem. Analysis and Mathematical

Physics, http://dx.doi.org/10.1007/s13324-015-0118-0,, 1–4 (2015)
10. Veliev, O.A., Duman, M.: The spectral expansion for a nonself-adjoint Hill operator with a locally integrable

potential. J. Math. Anal. Appl. 265, 76–90 (2002)
11. Veliev, O.A., Kıraç, A.A.: On the nonself-adjoint differential operators with the quasiperiodic boundary

conditions. International Mathematical Forum 2(35), 1703–1715 (2007)
12. Yang, C.F., Huang, Z.Y., Yang, X.P.: Ambarzumyan’s theorems for vectorial sturm-liouville systems with

coupled boundary conditions. Taiwanese J. Math. 14(4), 1429–1437 (2010)
13. Yurko, V.A.: On Ambarzumyan-type theorems. Applied Mathematics Letters 26, 506–509 (2013)

Advances in Analysis, Vol. 3, No. 3, July 2018 123

Copyright © 2018 Isaac Scientific Publishing AAN




